CS 267 HW 1

Ben Brock

Optimizing Matrix Multiply

- In HW 1, you'll be optimizing matrix multiply
- $C=C+A B$, where A, B, and C are dense matrices
- For simplicity, we'll consider the case of square matrices

Problem Pseudocode

$$
\begin{aligned}
& \text { for } i=1 \text { to } N: \\
& \text { for } j=1 \text { to } N: \\
& \qquad \begin{array}{l}
\text { for } k=1 \text { to } N: \\
\quad c[i, j]=c[i, j]+a[i, k] * b[k, j]
\end{array}
\end{aligned}
$$

3 nested loops $=>n^{3}$ complexity

Your Job: Implement This Interface

> void square_dgemm (int n, double* A, double* B, double* C);

You write this function, we call your function in a test harness.

Your job is to make it run as fast as possible.

Optimization Techniques

1) Blocking
a) L1 blocking
b) Register blocking
c) L2 blocking
2) Copy optimization
a) Copy to an aligned buffer
b) Transpose?
3) Vectorization
a) Write small, fixed-size ($\mathrm{n}=8$-16) GEMM, examine assembly
b) Intrinsics

Blocking (or Tiling)

$B(i, j)$ access pattern after blocking

Copy Optimization

Column major matrix in memory

